
Improving the Performance

of Particle Tracing in Curvilinear Grids

J.P.M. Hultquist

hultquist@nas, nasa. gov

Report RNR-94-009,

March 1994

Numerical Aerodynamic Simulation Systems Division

NASA Ames Research Center, Mail Stop T045.1

Moffett Field, CA 94035-1000

_inproceedings{xxx,

author ffi "J.P.M. Hultquist",

title = "Improving the Performance of Particle Tracing
in _iline_ Grids",

note = "1I£1 Paper 94-0324".

booktitle = "1111 aerospace Sciences Meeting",

add_lt'ess _Q 'tKeno i rll_U J

month = j an.

year = 1994,

note = "(81so RHit Tech kaport 94-009)"}

°Copyright (_)1993 by the American Institute of Aeronautics and Astronautics, Inc. No
copyright is userted in the United States under Title 17, U.S. Code. The U.S. Government has
• royalty-free license to exercise all rights under the copyright claimed herein for Governmental
p_. All other rights are reserved by the copyright owner.

Abstract

The tracing of particles through curvilinear gridded data is a common task in the

visualization of computed flow fields. This is most often done using a numerical

integration method over the interpolated physical-space vector samples. The
speed of this calculation can be improved by exploiting spatial coherence; that

is, the geometric proximity of the successive query points generated by the

numerical integration method.

Nomenclature

i, j, k

Z

P,q

_r

computational-space coordinates

integer parts of _, 7,

fractional parts of _, I/,
interpolation coefficient

physical-space position

vector field value (typically velocity)

position or vector samples
trilinear interpolating function

point-finding "distance" function

1 Background

Several useful methods of vector field visualization are based on the calculation

of tangent curves through an interpolated vector field. If this field is the velocity

of a steady fluid flow, then each curve defines the path traveled by a massless

advected particle. Such curves are called particle traces or streamlines. Most

flow visualization packages allow the user to specify a set of initial points from
which a family of streamlines is computed.

Buning[2] asserts that "... graphical analysis is first and foremost an inter-
active process." Weston[9] has added that:

Particle traces can be challenging to display and time-consuming to

set up because of the need to keep the number of lines small in order
to avoid confusion, while still capturing the essence of the features
of interest in the flowfield.

Interactive placement of the initial seed points, coupled with the rapid calcula-

tion of the resulting curves, is essential for the effective exploration of non-trivial

three-dimensional flow fields. Unfortunately, particle tracing through curvilin-

ear grids is among the more computationally expensive of the common visual-

ization methods. Thus, visualizing complicated flow fields is far more difficult

and time-consuming than one might hope.

1.1 Particle Tracing

Each streamline curve is the solution of the initial value problem posed by a

vector field _7(_) and an initial seed point _0. This curve can be depicted by
computing a sequence of points (z0, zl,.-. _n) such that

t i.4.sZi+I = Xi -4- t_*(z(t))dt

Jti

for a sequence of closely spaced values (ti). Adjacent points are then joined by

line segments to produce a piecewise-linear graphical representation of the ideal
curve.

In the visualization program PLOT3D (Buning[3]), as in many such pack-

ages, this sequence of points is calculated by numerical integration through

interpolated physical-space vector field samples. The field values within each

cell are interpolated by a trilinear function of the computational-space coor-
dinates of each query point. The computational-space coordinates are related

to the physical-space coordinates by a trilinear shape f, mction. Every time an

interpolated field value is needed, this function must be inverted to find the
computational-space location which maps onto the given physical-space coor-

dinates of the query point. The grid-local coordinates are then used as the

weights in the element fwnction which interpolates the field values within the
current cell. This conversion of each physical-space query point location into

its computational-space representation greatly limits the speed of streamline
construction.

1.2 Performance Improvement

A more rapid method for calculating streamlines first converts the vector field

sample at each node from its original physical-space coordinates to the equiv-

alent computational-space values (Eliasson[5], Shirayama[8]). The streamlines

are then computed through the cubical ceils of computational space and the re-

suiting curves are mapped into physical-space coordinates for display. Since the

interpolation and the integration are thereby expressed in the same regularly

sampled space, the calculation of the traces can proceed much more rapidly;
no conversion of the query-point coordinates is required. The great speed of

the computational space method is attractive, but irregularities in the physical

placement of the grid node points can introduce error into the field conversion.

While this error is quite small in most cases, the uncertainty it raises makes
this method perhaps less useful and certainly less used than the physical-space

approach.
Lagrange (1736-1813) showed that the velocity field of an incompressible

flow in two dimensions can be described by the scalar stream function (¢). This

concept was generalized to three dimensions by Yih[10] to describe a steady

three-dimensionalcompressibleflow using two coincident scalar fields. Ken-

wright and Mallinson[7] developed software which computes these daal stream

faactioas in a numerical flow field. The software constructs streamlines by lo-
cating the intersections of iso-valued surfaces computed in these two fields. This
approach is quite rapid. Its greatest limitation is that features within each cell

are represented by a single line segment. Resolution of smaller structures would

require a subdivision of the grid cells or perhaps the localized use of a numerical

integration method.
More conventional approaches to performance enhancement include the use

of adaptive stepsizing and more efficient integration formulae (such as the multi-
step Adams-Bashforth method in lieu of the more common Runge-Kutta schemes).

1.3 An Application Testbed

I have built an interactive flow visualization package called "Flora." This appli-
cation can read data and solution files in the PLOT3D format; Flora also accepts

PLOT3D command files.

Many of the commands have not yet been implemented, but the software
does parse the user input, and then calls the appropriate stub routine. Flora

currently supports the commands for reading data files, extracting gridplanes,

and placing the rakes for streamlines. (The other functions will be implemented

in future versions of the code.) Once the scientist has finished specifying the

input data and the visualization parameters, the software creates a scene in
which the computed visualization models are displayed.

Flora adds two new features which are not provided in PLOT3D. It can com-

pute and display stream surfaces which originate from a line segment (Hultquist [6]),
and it supports the interactive repoaitioning of the originating point and seg-
ment ea/ces. While a rake ia in motion, the stream surface or the family of

streamlines is repeatedly computed and displayed. Users can move a rake in

one scene at high magnification while viewing the resulting model from another

angle in a second window. This approach allows the precise placement of sev-
eral rakes in a few minutes, a vast improvement over what has been previously

po_ible with indirect control and leas rapid system response.

Flora computes streamlines using a physical-space second-order Runga-Kutta
method with adaptive stepsizing. At this level, the code is similar to that used

in PLOT3D and FAsT[l]. This quite ordinary integration method is supported

by various data management techniques which increase the speed of streamline

construction. This paper presents some of these enhancements.

2 Cell Caching

Moat visualizationsoftwareuses a cell-localinterpolatingfunctionto definethe

fieldvalueswithin each cell.Under such a mapping, an interpolatedfieldvalue

depends only upon the samples recorded at the vertices of the cell which contains

the query point. Rather than indexing directly into a large arrays of grid position
and solution data, Flora copies the node position and vector field samples for

the eight corners of the current cell into two small buffers of (8 x 3) words each.

This copying isolates the interpolation software from the format of the data

files, it reduces the time required to interpolate field values at successive query

points in the same cell, and it supports the on-the-fly calculation of derived flow

field quantities.

2.1 Cell Indices

Each block in a composite grid implicitly defines a new coordinate space over
its portion of the flow domain. The coordinates (_,r},() of a point in this

computational space can be divided into their integer and fractional parts:

which specify the index (i, j, k) of the lower corner of the the cell containing the
point and the fractional displacements (c_,/_, 7) E [0...1] within that cell. Each

node point has an integer value for each of its computational-space coordinates;

these values are also the index for each node point in the arrays that store the

grid and field values for that block.

2.2 Implementing the Caching

Access to the flow field data is mediated in Flora by an instance of a Im_rticle

data structure, which can specify a location in both the physical and the com-

putational coordinate space defined by the current block. The particle structure
contains pointers to the large arrays of grid and solution data. This structure

also caches a copy of the position and vector field samples for the eight corner
nodes of the current cell.

As a particle is advected through the flow domain, the computational-space
coordinates of each new query point are split into their integer and fractional

parts. The integers form the index of the node at the lowest-indexed corner
of the containing cell. If this index is unchanged from that of the previous

query point, then the interpolation can proceed with the previously cached sam-

pies. This avoids the repeated fetching of these values from scattered locations

throughout the grid and solution data arrays.

If the cell index has changed, then the vertex positions and field samples for
the new cell must be loaded into the particle structure. The three index values

are multiplied by previously computed offsets for each block dimension, and the

products are summed to form the total addressing offset for the lowest-indexed

node. The additional offsets for the other seven corners of the cell depend only

upon the dimensions of the current block. The position and vector field samples

are loaded into contiguous memory words in the particle structure, starting from
the lowest-indexed vertex and continuing in column-major (FORTRAN) order to

the sample data for the diagonally opposite vertex.

offset - ((i*di) + (j*dj) ÷ (k*dk));
/or each component {

src = field_data + offset;

dst = particle-cache;

dst[0] - arc[0 3;
dst[1] - src[di];

dst[2] - arc[dj];

dst[3] = src[di + dj];
dst[4] - src[dk];

dstCS] - arcC di + dk];

dmt[6] = src[dj + dk];

(hit[T] - sr¢[di ÷ dj + dk];

This caching of the vertex positions and field samples isolates the interpolation
code from the format of the field data, which sometimes interleaves the compo-

nents of vector samples and sometimes stores the values for each physical-space

dimension in separate arrays.

Caching of the sample values also supports the deferred or lazy calculation
of field data, such as for computing velocity from the density and momentum

samples at the vertices of each newly encountered cell. If only a few streamlines

are to be calculated, this deferred calculation is much more efficient than code

which first computes the value of the new field at every node point in the entire

grid before computing any streamlines.

2.3 Working Set Size

In any type of caching scheme, the notion of the workiag set may be applied

(Denning[4]). In a virtual memory computer system, the working set is the

collection of memory segments or pages which have been accessed by a process
over some specified interval of time. The number of different segments or pages

in the working set is called the workiag set size. This is a measure of the Iocald_

of the process; that is, how many different areas of memory have been accessed

by the process over that time interval. A process with a smaller working set

size will tend to run more quickly, since a higher percentage of its text and data
can reside in the faster hardware of the cPtJ cache.

Wemayconsiderthe localityof anadvecting particle. Clearly, the particle

resides at any given moment in a single cell; however, the query points of an
integration algorithm may fall within neighboring cells. Thus, performance

might be further improved by caching the data for more than one cell in each
particle structure. A cache miss occurs when the data for the enclosing cell is

not already in the cell-cache. The data for one of the previously encountered

cells must then be overwritten by the data for the new cell. Typically, the cell
which is removed from the cache is that which was "least recently used" and

presumably (but not always!) the least likely to be used soon.
To investigate the effect of cell-cache size on the frequency of cell-cache

misses, I computed several streamlines through a three-dimensional flow field.

The integration method was second-order Runge-Kutta in physical space, using

stepsizes scaled to produce points separated by at most one-fifth of a cell-width

in any grid dimension. The test was repeated several times, with a cache size
ranging from zero to four cells. The CPU times were measured on a Sili-

con Graphics 320-VGX, using a single 33 megahertz processor.

CACHE QUEItY CACHE CPU

SIZE POINTS MISSES SECONDS

3846 3846 5.9

3846 435 2.8
3846 435 2.8

3846 434 2.8

3846 434 2.8

For a simple ttunge-Kutta scheme, the locality is quite high and little improve-

ment is gained by having space for more than one cell in the cache. Other
methods have somewhat worse locality, as for a truly adaptive scheme which

effectively executes two integration methods in parallel. A cache of two cells or
more would allow each method to advance independently, without unfortunate

interaction in the particle data cache.

Note the great difference in speed between having zero and one cell in the

cache. By loading the data for the current cell, we can avoid much of the index-

ing arithmetic for accessing the data from the original grid and solution arrays.
The cell cache becomes even more valuable as the computational effort required

for loading new field data increases. In the experiment above, the momentum

was divided by density to find the fluid velocity at the vertices of each newly

encountered cell. More involved calculations might be used to evaluate the curl

of a vector field or the gradient of some scalar flow field measure. But even in

these cases, the cache need only be large enough to contain the data for one or
two cells.

Additional savings could be obtained by recognizing that adjacent cells share

four vertices. The already cached values for these shared nodes can be copied

directly into four of the slots in the newly vacated cell-cache entry; these samples

neednot be recomputed from the original flow data. This has not yet been

implemented in Flora, but would be worthwhile for vector fields which are more

time-consuming to compute.

Summary" The flow field values at each query point are typically defined by an
interpolation of the values stored at the vertices of the enclosing cell. By caching

these samples, we can reduce the cost of accessing this data for subsequent query

points in this same cell.

3 Interpolation

A trilinear interpolating function produces a first-order continuous, piecewise-

linear reconstruction of the ideal flow field. If the position and vector field

samples for the current cell are loaded into small contiguous buffers, then a rapid

and general implementation of the interpolating function becomes possible.

3.1 Trilinear Interpolation

In the cell-local trilinear interpolating function, the relative contribution of each
vertex sample is a product of the fractional displacements of the query point

along each computational-space dimension:

ao :(l-a) al =

= (l-/_) /_ =/_
7o =(1-'Y) "/I -7

z_i_(_,_,_) = [_o_o_o]_ooo+
[a0_071]u001+
[ao31"Y0]u010+
[a0_171]u011+
[al_'yo]ul0o+
[al_o'rl]ulol+
[al_lT0]ul10+

The interpolation weight which is applied to each vertex sample is the computational-

space volume bounded by the opposite vertex and the position of the query

point. For example, if the offsets (a,/_,'y) are all equal to one third, their
product of 1/27 is applied as the coefficient for the sample value (Ulll) at the

uppermost-indexed vertex of the current cell.

3.2 Operation Counts

The interpolating function as written above requires 10 additions and 24 mul-

tiplications for each component of the field being sampled. The interpolating

of a vectorin threedimensionswouldthereforerequire3 x (10 + 24) or 102

floating-point operations. Factoring of common sub-expressions and the pulling

of some invariant expressions out of the loop body can bring these totals down

to 3 additions and 12 multiplications in a pre-iterative setup phase, with 7 ad-
ditions and 8 multiplications required for each component of the sampled field.

This rearrangement brings the total down to 60 operations in the case of three-
dimensional vectors.

A different factoring uses a sequence of seven linear interpolations or lerps.

Each lerp produces the weighted average of two values, using an interpolation

coefficient (6) ranging between zero and one.

LERP(6, p, q'_ "-- ((1 -- _)p_- 6q'_ _- (f'_" _(q*-- p'_)

The trilinear interpolation may be computed by using the third computational-

space offset 3' to combine the eight original vertex samples into four interpolated

values. These intermediate results are combined pairwise using fl as the interpo-

lation weight, and the final value is computed using a as the weight in a single

step.

U00'_ = LERP(% ttO00, UO01)

Ul0_ = LERP('/, UlO0, tll01)

Ul0 _ = LERP(% U010, U011)

Ull_ = LERP(% U110, U111)

U0#'V "- LERP(_, U000, Ual0)

U107 = LERP(_, U101, Uall)

Uor0. 7 "-- LERP(O, U0,8.y, tll,8..r)

This method is depicted graphically in the figure below. The first four steps

produce the values interpolated along four edges of the cell. The next two steps

compute values on opposite faces. The final evaluation yields the interpolated

value at the specified query point in the interior of the cell.

Thisimplementationrequires14additions and 7 multiplications for each com-
ponent of the sampled field, with no provision for pulling common operations

outside the loop. The three different methods of implementing the interpolation

function yield the following operation counts for the case of three-dimensional

vector samples:

OPERATIONS [(n = 3)

METHOD add mul] total

SIMPLE VOLUME 10n 24n 102

FACTORED VOLUME 3 + 7n 12+ 8n 60

SUCCESSIVE-LERP 14n 7n 63

The successive-lerp metho _ and the factored version of the volume method have

roughly a comparable performance of about 60 operations for vector samples in

three dimensions. Each runs in about two-thirds of the time required by the
straightforward and non-optimized implementation of the volume method.

3.3 A General Implementation

The caching of the vertex samples allows a very general implementation of the

successive-lerp method for evaluating the interpolating function. This simple

code can interpolate field samples with any number of components within cells
having any number of dimensions. For vector samples in a three-dimensional

cell, the calculation of the interpolated value consists of three iterations of a
loop which repeatedly combines the upper and lower halves of the cell-cache:

nun - cache.size;
IJrC at cache.data;

dnt u tap_buffer;

/or each oO,et(.-% p, _)
dol = next firactional o_Jet
nun = hum/2;

lo = arc;

hi = arc + nua;

DOTIMES (i,num) {

dBt[i] = 12.RP(del, lo[i], hi[i]);

}
arc = tap_buffar;

The first pass combines the four cached samples on half of the cell with their

counterparts on the opposite cell face. These interpolations use the offset 7

as the coefficient to produce four new values which are written into a tempo-
rary buffer. These intermediate values are combined pairwise using _ as the

interpolationweight,againmergingthetwohalvesof thearraybypalrwisein-
terpolation. These results can be written back into the same temporary buffer,

since the previous values are no longer needed. These two new values are com-

bined into a single result using a as the interpolation coefficient. This iteration
of pairwise interpolations could, of course, be unrolled for the frequently occur-

ring case of three-dimensional vectors on the eight corners of a three-dimensional
cell.

Summary: The query point lies within some cell. The position and vector field
data at the corners of this cell can be copied into a small buffer. This cell-cache

supports a rapid and general implementation of the interpolating function.

4 Computational-Space Extrapolation

When a particle is advected by physical-space integration, the computational-

space coordinates for each new query point must be found. We have seen that

these coordinates are then split into their integer and fractional parts. The in-
teger values identify the enclosing cell and the fractional parts are used as the

weights in the interpolating function. Finding these computational-space coor-

dinates for each new query point typically involves a Newton-Raphson method

which iteratively computes a sequence of computational-space positions which
lie increasingly close to the desired location. The iteration is often started from

the computational-space position identified by the previous invocation of the

point-finding method. A closer starting point can be found by extrapolating, in

computational coordinates, some short distance beyond the end of the growing

streamline. This improved initial estimate can reduce the number of iterations
required for the convergence of the Newton-Raphson method, and this can in-

crease the speed of the physical-space integration of streamlines.

4.1 The Point-Finding Problem

The point-finding problem is to identify the real-valued computational-space

coordinates which interpolate onto a specified physical-space location. This can
be posed as a multi-dimensional root-finding problem on a distance function 3r

that measures the error between the specified physical-space location (_'*) and

the interpolated result at a given offset (a, _, 7) in the current cell:

,7, = - i*) = 6

Since the grid is bent in physical space, this field may have several non-zero
minima. The zero-point is usually found using two phases: a searching method

that finds a candidate point in the neighborhood of the proper minimum, and a

subsequent polishiag method that refines this approximate value into the final

answer. The initial search is used to ensure that the subsequent refinement

phase does not inadvertently fall into an erroneous local minimum.

TheNewton-Kaphsonmethodiscommonlyusedinthepolishingphase.This
methodbeginsin somecellat some offset _70(= [a, _, 7]0)- This estimated
position is repeatedly shifted though a sequence of new locations 8,+1 which,

one hopes, lie increasingly more close to the unknown ideal location _'*. This
method is based on the recurrence relation:

The denominator of this equation is the 3 x 3 Jacobian matrix which contains

the partial derivatives of the interpolating function. This matrix is constructed
from finite-differences of the node-point positions. This matrix is inverted, and

the result used to map the current physical-space error measure into its compu-

tational space representation.
After a few iterations, the distance between successive points (Ni) should

be quite small. If the distance is increasing, then the method has failed. The

iteration is halted when the successive values differ by some tiny amount. If

the resulting offsets lie outside the range [0...1] in any grid dimension, then the
query point lies outside the current cell and outside the domain of the function

_. The cell index is shifted at most one step in one or more grid dimensions
and the iteration is restarted to solve the new distance function defined by the

positions of the corner nodes of this neighboring cell.

4.2 Extrapolation

In a second-order Runge-Kutta method, two query points are generated by each

integration step. The first query point is placed beyond the end of the curve

using one-half the current stepsize, and the second query point is advanced using

an average vector sample scaled by the full stepsize. The point-finding method

for each of these query locations is typically begun from the previously identified

computational-space coordinates of the most recent query point.

Let IFbe the computational-space position of the most recently computed
point on the streamline. Let _' be the coordinates of its immediate predecessor

on this partially computed curve. Then (IF- q'] is a first-order approximation
of the local value of the computational-space vector field. We might expect

the point-finding method to converge more quickly if the initial point (_0) is

first placed at a better computational-space location, shifted beyond fby either

one-half of the vector (IF- q")or by the full amount.
If the two most recent points on the streamline lie in different grid blocks,

then this extrapolation approach cannot be used. The numerical difference
between the computational-space coordinates of points in two separate blocks

has no useful meaning. Similarly, the extrapolation of the curve can yield an

estimate beyond the bounds of the current block. Once again, the extrapolation

fails in this case. These failures should occur in only a small percentage of the

integration steps; most blocks are several tens of cells in each dimension and each

integrationsteptypicallyadvancesthe particle by only fraction of the current
cell size.

4.3 Performance Measurement

Several streamlines were calculated with a physical-space second-order Runge-

Kutta method, both with and without the computational extrapolation en-

hancement. In each case, I counted the number of query points generated by

the integrator, the number of times the Newton-Raphson method was executed,
the total number of iterations of this method, and the elapsed cPu time.

EXTRAPOLATION ?

QUERY POINTS
CELLS LOADED

NR INVOCATIONS

NR ITERATIONS

CPU SECONDS

no yes
3846 3846

435 437

4281 3854
8143 3904

2.8 1.9

Extrapolation prior to the invocation of the point-finding method reduces the
cPU time by about one-third. This improvement can be attributed to a reduc-
tion in the total number of iterations of the Newton-Raphson method, each of
which includes the construction and the inversion of a 3 x 3 Jacobian matrix.

The improvement is also obtained by reducing the number of times the

Newton-Raphson method converges to an offset which lies outside the current
cell. When this does happen, the cell index must be adjusted and the method

must be restarted in the neighboring cell. By extrapolating in computational-
space, the proper cell is used more frequently in the initial attempt and the
number of recalculations is reduced. This is shown in the reduction in the

number of invocations of the Newton-Raphson method, from 4281 to 3854, the

latter being only eight invocations above the minimum poesible number of once

per query point.
Summary: By extrapolating the partially constructed streamline, we can esti-

mate the computational-space location of the next query point. This reduces

the number of invocations of the Newton-Raphson method and it reduces the
number of iterations executed within that method.

5 Cell Tags

The iblaak field in a composite grid allocates a full thirty-two bit word to every

node point. Disallowed node points, which do not carry valid field samples, are
marked with an IBLANK value of 0. Usable node points in the interior of a block

are marked with the value 1. The meaning encoded by the IBLANK values must

be preserved by the visualization software. The interpolation of field samples

at each query point location must be preceded by a check of the IBLANK ValUes

at the eight corners of the cell which contains that point. Field values may be
interpolated from the samples recorded at the cell vertices only when all eight
nodes are marked with non-zero IBLANK numbers.

This method of annotating the grid is rather wasteful, consuming four megabytes

for a moderately sized grid of only one million nodes. A more efficient encoding
provides more information in the same amount of space, simplifies the sampling

of the field data, and makes the code slightly more efficient.

5.1 Valid Cells

In Flora, each node point is assigned a tag word, which is subdivided into several

single bit flags and a small integer field.

_,e,_l,,,,[_,,, I index]

tag_cell, valJ.d

Information for each node is stored in its tag, and comparable information for

each cell is stored in the node tag of its lowest-indexed corner. The nodes on

the three uppermost faces of each grid block have no associated cell and the cell

bits within these tag words are ignored.
Each tag word contains a single-bit flag called T/GAIODE_VLLID. This is set

to TRUE for nodes at which the original IBLANK number was non-zero. The

state of this bit indicates whether a node point carries valid sample data. A

comparable flag is assigned to each cell and set to the logical-conjunction (AND)

of the node flags for its eight corner nodes. A fetch of a single tag word and
a test of the TLG_eKLL_VALID bit-flag within that tag is therefore sufficient for

determining the validity of interpolated values within each newly encountered
cell.

5.2 Wall Cells

An IBLANK value of 2 marks any node which lies on an impermeable boundary.

These node points carry valid field samples, but if all four corners of a cell face
are so marked, then no fluid may pass through that face. PLOT3D handles this

situation using a special constraint called wall bouncing. By explicitly restrict-

ing the curves away from these surfaces, the software avoids one particularly

annoying artifact of numerical error: streamlines that leave the flow domain by

passing through the skin of the vehicle.

Wall-bouncing is not yet implemented in Flora, but the cell tags would allow

the convenient marking of these impermeable cell faces. The integration software

couldthen test certain bit-flags in the cell tag and displace the advancing particle

as appropriate in any marked cell.

5.3 Boundary Cells

A composite CFD grid contains several partially overlapping or abutting blocks

of node points. The node points in the overlap regions carry a negative IBLANK

number. The absolute value of this tag is the number, counting from one, of a

locally overlapping block.

Two bit-flags have been allocated in each tag word. The node flag TAG 10DE_D0110R
is true at those nodes in the overlap region between blocks, nodes which carry

a negative XBLANK value. A cell flag TAG_CgLL_D0101t is set to the logical-

disjunction (OR) of the donor-flag for the corner nodes of each cell. When a
query point fails outside the current block or into an invalid cell, then the donor

flag of the previous cell is tested. A TRUE value indicates that one or more
vertices of the cell lie in an overlap region. The neighboring block can then be

searched for the position of the new query point.

SImmary: By allocating a tag word to each node, and subdividing these words
into subfields, we can encode more information about the grid than is provided

by the ISLANK number. This allows a more convenient and slightly more efficient

implementation of certain data query operations.

6 Donor Points

Visualization software must be able to continue the calculation of streamlines

through the boundaries which separate adjacent blocks. A negative [SLANK

number indicates which other block overlaps or abuts the current block in some

region of interest, but a coarse search of the new block is required before the

point-finding method can be applied. Augmenting the grid with donor-point
locations can eliminate the need for the coarse search and improve the speed of
streamline block transitions.

6.1 Storing the Donor-Receiver Equivalences

Within the regions of overlap, the position of each node can be expressed in the
computational coordinate space defined by the other block. During the solving

of the flow field, every such node point receives the interpolated field quantities

sampled at the corresponding computational-space domor point in the other

block. This exchange of data allows for the eventual calculation of consensus
values for the flow field quantities in these regions.

Receiver node points generally occur over an entire block face. The neigh-

boring block has its own collection of receiver nodes in this shared region of

overlap.Eachblockprovidesthecomputational-space donor points for the re-
ceiver nodes of its neighbor. The donor coordinates for these two sets of receiver

nodes describe the relative position of the two blocks.

When a grid is loaded into Flora, the software counts the nodes which carry
a negative IBLANK number. Storage is then allocated to hold the records for

that many donor-receiver pairs. In a typical grid, only about five percent of the

nodes are located in overlap regions. Because so few node points are receivers,

the donor-receiver information can be recorded in a separate small array of
records which accompanies the node position data of each block. This secondary

array is indexed by a small integer which is stored in the tag word of each node.

Nodes which are not within an overlap region carry a zero index; a non-zero

index specifies the record for that receiver node. The number of bits presently
allocated in Flora to store the index in the tag word is currently twenty. This

supports the indexing of over one million receiver points per block while still

leaving twelve bits for the storage of node and cell bit-flags.

6.2 Computing the Donor Points

These computational-space donor point coordinates are sometimes recorded in

a secondary data file which is produced by the grid generation code. But the

donor point information is not always available in this form. The donor-receiver
equivalences can be computed from the node position data and the IBLANK

numbers. In the simplest approach to this problem, the first donor-point for each

block is found by a coarse search, followed by the usual Newton-Kaphson point-

finding method. The donor points for the receiver nodes along a single gridline

are then computed by repeated invocations of the point-finding method, each
time commencing from the computational-space coordinates of the previously

identified donor point.

We can improve the speed of this calculation by using computational-space
extrapolation. The first two receiver node points on a gridline are processed as

before. Donor points for subsequent nodes on this same gridline can then be

identified by first advancing by the computational-space distance between the

two previously identified donor points. The Newton-Raphson method is started

from this improved initial position, thus limiting number of invocations of and

iterations within this method. As in streamline calculation, this enhancement
can be used only if two previously located computational-space points reside in

the same donor block, and only if the extrapolated position also lies within that

block. Furthermore, this extrapolation is sensible only when the two previous

receiver points and the current receiver node point are successors along the same

gridline.
Swmmary: Donor-point coordinates can be used as an efficient means to continue

the calculation of streamlines into neighboring blocks. Computational-space

extrapolation can be used to improve the speed at which these donor-point

coordinates can be computed from the node position and IBLANK data.

7 Self-Abutting Blocks

Singleblocks are often wrapped around a cylindricalbody so that node points

on opposite block facesare coincident.Blocks are alsofolded around airfoils,

bringingone blockfacetoabut againstitself.These two varietiesofself-abutting

block,the O-type and C-type topologies,exhibita branch cut inthe flowdomain

which iscomparable to the inter-blockboundaries discussedearlier.Unfortu-

nately,negativeIBLANK numbers arenot oftenprovided along the seams ofthese

self-abuttingblocks,sincethisjuncture ishandled using other mechanisms in
most flow solversoftware.

Unfortunately,the visualizationsoftwarehas traditionallyhad accessonly to

the IBLANK field,and not the auxiliaryfileswhich describethe presenceand the

form of self-abuttingblocks. Many visualizationpackages (includingPLOT3D

and FAST) thereby failto continue streamlinesacross these unmarked branch

cuts.An small heuristictestcan be used to crosstheseboundaries efficiently.

7.1 Using Iblank Numbers

Some researchers have edited the IBLANK field to explicitly indicate the connec-

tivity of self-abutting blocks, after the simulation and prior to the visualization
of the computed fields. It would be preferable if the visualization software itself

were to handle these special cases without the need for manual post-simulation

editing of the IBLANK data.
In a three-dimensional O-type block, the vertices at the corners of a block

face create four coincident pairs with the corners of the opposite face. In blocks
of the C-type, two corners of one block face are coincident with the two other

corner nodes on the same face. In one possible method, the visualization soft-

ware could compare the relative positions of the eight corners of each block and

generate the appropriate IBLANK masks for any block which is thus recognized

to he self-abutting. The software would then attempt to compute donor-receiver

equivalences across these abutting faces. The transition across such boundaries
would then be handled in the manner described earlier, using the donor-receiver

equivalences to more precisely indicate where an advected particle re-enters a

self-abutting block.

7.2 Implicit Connection

Flora uses a different method for handling this transition. Whenever a stream-

line exits a block, the Flora software checks the tag word of the most recent

valid cell to determine whether there are donor points at any of the vertices

of that cell. If no donor points are found, then either the particle has exited

the computational domain or it hM czcemd the unmarked boundary of a self-

abutting block. If we assume that the node points are coincident across this
boundary, then there are three possible points near which the streamline may

havere-enteredthissameblock. One of these is found in blocks of the O-type

and the two other cases occur in C-type blocks. If any one of these three re-

entry positions prove to be the starting position for a successful point-finding

method, then the calculation can be resumed at this new location.

A streamline crossing the seam of a O-type block will exit one block face
and re-enter the same block through the opposite face. For a specific example,

let us assume that the streamline exits the block through the lower block face

in the first grid dimension. Then, if the streamline exits the block from the cell

with index (irnin,j, k), the point of re-entry will be near the node (irna=, j, L) in
that same block.

A C-type block may be folded along one of two grid dimensions to bring

one block face into a self-abutting state. In the example used in the previous

paragraph, the streamline will re-enter the block at either (i,nin,j,naz -j, k) or

(imi,, j,/r,naz - k), depending upon whether the block has been folded along the
j or the k grid dimension.

Summary: The branch cuts in C-type and O-type blocks are rarely marked by

negative IBLANK numbers. Visualization packages often fail to continue stream-

lines which cross these boundaries. One simple method of streamline resumption

requires only the testing of three node points whenever a streamline exits a block

from a cell which carries no donor records. This resumption technique requires

no user intervention. It incurs no startup cost for pre_processing the grid. It
requires no storage of additional donor records. Most importantly, it properly

continues streamlines through self-abutting blocks which match point-to-point
across the branch cut.

8 Conclusion

The successive query points generated by a numerical integration method occur

close together and in a predictable pattern. This behavior can be exploited by

caching the sample values for the vertices of one or more cells, and by extrap-

olating along partially computed streamlines to reduce the calculation required

in the point-finding routine. Precomputing the donor point coordinates avoids
the loss of coherence which would otherwise occur at the block boundaries. Ex-

trapolationalonglinesof receiver points improves the efficiency of donor point
calculation. Checking for particle re-entry in self-abutting blocks allows the

resumption of streamlines across these previously troublesome boundaries.

9 Acknowledgements

I wish to thank Tom Lasinski for his patient support of this work. I also wish

to acknowledge the support and advice of Pieter Buning, Fred Brooks, Jim

Coggins, and Henry Fuchs.

References

[1] Gordon V. Bancroft et al. FAST: A multi-processed environment for visu-
alization of computational fluid dynamics. In Proceedings of Visualization

'go, pages 14-27, San Francisco, CA, October 1990.

[2] Pieter G. Buning. Sources of error in the graphical analysis of CFD results.

Journal of Scientific Computing, 3(2):149-164, 1988.

[3] Pieter G. Buning and J.L. Steger. Graphics and flow visualization in CFD.
In AIAA 7th CFD Conference, pages 162-170, Cincinnati, OH, July 1985.

AIAA Paper 85-1507-CP.

[4] Peter J. Denning. The working set model for program behavior. Comrau-

nications of the ACM, 26(1):43-48, January 1983. (Reprinted from a 1967

conference proceedings.).

[5] P. Eliasson, J. Oppelstrup, and A. Rizzi. STREAM3D: Computer graphics

program for streamline visualization. Advances in Engineering Software,

11(4):162-168, 1989.

[6] J.P.M. Hultquist. Constructing stream surfaces in steady 3d vector fields.
In Proceedings of Visualization '92, pages 171-178, Boston, MA, October
1992.

[7] David Kenwright and Gordon Mallinson. A streamline tracking algorithm
using dual stream functions. In Proceedings of Visualization '92, pages

62-68, Boston, MA, October 1992.

[8] S. Shirayama. Visualization of vector fields in flow analysis I. In 29//,

Aerospace Sciences Meeting, Reno, NV, January 1991. AIAA Paper 91-
0801.

[9] Robert P. Weston. Applications of color graphics to complex aerodynamics

analysis. In AIAA 25th Aerospace Sciences Meeting, Reno, NV, January

1987. AIAA Paper 87-0273.

[10] Chia-Shun Yih. Stream functions in three-dimensional flows. In Selected

Papers, pages 893-898. World Scientific, Teaneck, NJ, 1991.

